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Evacuation is a typical recourse to prevent loss of life if a high storm 
surge occurs, especially in hurricane-prone regions. Bridges are the key 
locations of bottlenecks. Because of the specific geographic shape and 
roadway network of Miami Beach, Florida, residents need to evacuate 
over one of the six major bridges or causeways: MacArthur Causeway, 
Venetian Causeway, Julia Tuttle Causeway, John F. Kennedy Causeway, 
Broad Causeway, and Haulover Bridge. A mixed logit model is presented 
to identify the determining factors for evacuees from Miami Beach in 
selecting one of these bridges during a major hurricane. The model was 
developed by using data obtained from a survey that included a hypo-
thetical Category 4 (major) hurricane scenario to reveal the most likely 
plans for evacuees from this area. The estimation findings suggest that the 
preference over a given bridge involves a complex interaction of variables, 
such as distance to reach the evacuation destination, evacuation-specific  
characteristics (evacuation day, time, mode, and destination), and 
evacuee-specific characteristics (gender, race, evacuation experience, 
and living experience). The normally distributed random parameters in 
the model account for the existence of unobserved heterogeneity across 
different observations. The findings of this study will help emergency 
officials and policy makers to develop efficient operational measures and 
better evacuation plans for a major hurricane by determining different 
fractions of people taking each of the six bridges.

Frequently occurring hurricanes are a major concern for coastal areas 
of the United States because of the devastating impacts, loss of lives, 
and property damage they cause. Barrier islands are a major area of 
risk in these coastal areas. These relatively low-elevation islands lie 
off much of the Atlantic and Gulf coastlines and expose large numbers 
of their residents to storm surge risk from hurricanes. Evacuation is 
the usual recourse to prevent loss of life if a high storm surge 
occurs, and most often evacuation from these islands depends on 
timely traffic flow over bridges and causeways. In the early morning  
of September 12, 2009, many residents of Galveston, Texas, had 
planned to evacuate for Hurricane Ike but woke to find that their 
causeway evacuation route was unavailable due to storm surge flood-
ing (1). Hurricanes Irene (2011), Sandy (2012), and Arthur (2014) all 

resulted in large numbers of people evacuating from barrier islands at 
the last minute even as tropical storm force winds and a storm surge 
were coming onshore (1, 2). One often thinks of barrier islands as 
being isolated and having seasonal populations at most, but many 
are components of densely populated urban areas such as Galveston 
(population 47,762) and Miami Beach, Florida (population 91,026).

Evacuation problems in hurricane-prone regions are further 
complicated by the limited growth of the road network as compared 
with the growth of population in these areas (3). For example, during  
Hurricane Rita, many people were stuck in gridlock on Houston,  
Texas, freeways and a massive loss of life could be possible in similar  
situations (4). In short-notice disasters like hurricanes, evacuation 
management agencies usually identify alternate evacuation routes 
depending on the expected path of the hurricane before the evacua-
tion, and official routing recommendations are provided to evacuees. 
Evacuation orders are supposed to allow clearance time for traffic to 
get past bottlenecks like bridges and roads with limited traffic capacity. 
However, evacuees often delay departure and wind up leaving together 
and on similar routes; this behavior shows synchronization in terms of 
evacuation behavior (5). As a consequence, traffic surges occur that 
result in gridlock on several evacuation routes. Route choice during 
evacuation is a complex process because evacuees can take the most 
familiar route or follow the routes recommended by emergency offi-
cials or those taken en route to obtain better travel time to reach a safe 
destination (6). In this regard, emergency officials require a detailed 
understanding of the determinants of evacuation routing behavior to 
control highly unpredictable vehicular traffic flows trying to evacuate 
in a short lead time.

Since bridges are main sources of bottlenecks, it is important to 
know how they are utilized during a disaster from the evacuees’ 
point of view. Efficient operational and control measures, such as  
contraflow and bridge closure, need to be determined so that the 
system runs predictably and controllably in a situation different from 
that of regular traffic. This operation requires a behavioral model 
of route choice in the evacuation situation. The current research  
developed a random-parameter multinomial logit model (i.e., a mixed 
logit model) to understand the bridge choice strategies by Miami 
Beach residents during hurricane evacuation. The model contributes 
to hurricane evacuation research by determining the influential fac-
tors in selection of one of the six major bridges, such as distance to 
reach evacuation destination, evacuation-specific characteristics 
(evacuation day, time, mode, and destination), and evacuee-specific 
characteristics (gender, race, evacuation experience, and living expe-
rience). In addition, the distribution of random parameters accounts 
for the heterogeneous responses of the evacuees.

In this study, the choice of a major bridge by Miami Beach resi-
dents during hurricane evacuation is modeled with the data obtained 

Hurricane Evacuation Route Choice of 
Major Bridges in Miami Beach, Florida

Arif Mohaimin Sadri, Satish V. Ukkusuri, Pamela Murray-Tuite,  
and Hugh Gladwin

A. M. Sadri and S. V. Ukkusuri, Lyles School of Civil Engineering, Purdue Uni-
versity, 550 Stadium Mall Drive, West Lafayette, IN 47907. P. Murray-Tuite, 
Department of Civil and Environmental Engineering, Virginia Polytechnic Institute 
and State University, 7054 Haycock Road, Falls Church, VA 22043. H. Gladwin, 
Department of Global and Sociocultural Studies, Florida International University, 
3000 Northeast 151st Street, North Miami, FL 33181. Corresponding author: 
S. V. Ukkusuri, sukkusur@purdue.edu.



Sadri, Ukkusuri, Murray-Tuite, and Gladwin� 165

from a survey that included a hypothetical Category 4 (major) hur-
ricane scenario. The survey was designed so that the respondents 
provided their most likely evacuation plans during a major hurricane. 
Miami Beach is a coastal city in Miami–Dade County, Florida, with 
a total population of 91,026 (7). This city has a unique geographical 
shape and road network (Figure 1), and residents need to evacuate 
over one of the six major bridges or causeways: MacArthur Causeway, 
Venetian Causeway, Julia Tuttle Causeway, John F. Kennedy Cause-
way, Broad Causeway, and Haulover Bridge. In particular, the purpose 
of this study is to model the preference of evacuees for selection of 
any of these six bridges to reach a safe destination during a major 
hurricane. The findings of this study provide a logical inference in 
terms of evacuees’ bridge choice strategy and would help practitioners 
to take efficient measures by determining the level of congestion on 
these bridges and causeways.

Background and Related Work

A number of existing studies have considered the overall hurricane 
evacuation process. In general, the importance of effective evacuation 
management planning in coastal regions has been duly addressed in 
some of the studies (4, 8–10). To explain the complex dynamic process 
of hurricane evacuation, several studies identified different governing 
factors, such as hurricane trajectory and warning systems, household 
locations and types, and characteristics of the evacuees, among others 
(9–14). In particular, several studies focused on individual-level deci-
sion making during the process of evacuation. These studies include 
those on evacuation decision making (9, 13, 15–19); evacuation timing 
behavior (20–24); mobilization time, that is, time elapsed from the 

decision to evacuate to the actual evacuation (20, 25–30); destination 
choice (31–38); travel mode to evacuate (39, 40); and preevacuation 
preparation activities (41).

Several other studies contributed to the area of emergency plan-
ning and network-level analysis. Barrett et al. provided guidance 
on the development of dynamic traffic models for hurricane evacu-
ations (42). The relative accuracy of different forms of trip genera-
tion for evacuating traffic was examined by Wilmot and Mei (43). 
With the help of trip chain simulations, Murray-Tuite and Mahmassani 
presented a method to predict delays and traffic densities during 
evacuation (44). Wolshon et al. emphasized the areas to be considered  
for a successful evacuation plan (45–46). Liu et al. proposed a cell-
based network model to determine optimal staging schemes to reduce 
congestion on an evacuation network with a more uniform distribution 
of demand (47). Within a microscopic modeling framework, Dixit and 
Radwan introduced the “network breathing” process for the external 
controls on entry and exit of evacuating vehicles into the evacuation 
network to improve overall outflow (48). The impact of incidents 
on the time to complete an evacuation of a large metropolitan area 
was evaluated by Robinson et al. (49). Yazici and Ozbay proposed a 
system-optimal dynamic traffic assignment model with probabilistic 
demand and capacity constraints while accounting for the randomness 
in evacuation demand and roadway capacity (50).

Research related to evacuation routing strategy includes several 
other studies. For example, Cova and Johnson proposed a network 
flow model to identify optimal lane-based evacuation routing plans 
in a complex road network in order to reduce traffic delays at inter-
sections in evacuations (51). Chiu and Mirchandani showed that  
the route choice behavior of an evacuee results in subsequent deg-
radation of evacuation effectiveness (52). The study introduced a 

FIGURE 1    Respondents from Miami Beach, who are most likely to use one of six major bridges.
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“feedback information routing” strategy that increases the evacuation 
effectiveness to an optimal condition. In this regard, the multinomial 
logit-based route choice model ERCM was calibrated through the 
stated-preference approach. However, ERCM is not intended to serve 
as an exact representation of the actual route choice behavior during 
evacuation according to this study but to show how actual route choice 
results in the deviation of evacuation performance as compared with 
optimal route choice behavior. Shen et al. proposed two models to 
address the highly uncertain and time-dependent nature of trans-
portation systems during disruption (53). By using the shortest-path 
technique, one of the two models offered dynamic routing control 
in a stochastic time-varying transportation network that routes the 
vehicles. The study also found that the proposed routing strategy 
minimizes evacuation time to the safety shelter locations. Lammel 
and Flotterod compared two different routing strategies within a multi
agent simulation framework and found that the cooperative routing 
approach generates a substantially higher evacuation throughput 
than an alternative noncooperative routing strategy (54).

However, only a few studies addressed the evacuation routing 
decisions made by evacuees during a hurricane at the household or 
individual level. Carnegie and Deka found that 81% of the survey 
respondents who were “very likely” or “somewhat likely” to volun-
tarily self-evacuate would be “very willing” to follow the evacua-
tion instructions in terms of their route choice and departure time 
(14). Robinson and Khattak showed that evacuees’ preference of 
whether or not to detour from a route when faced with congestion 
can be controlled by using advanced traveler information systems 
(55). The study conducted a stated-preference approach to show that 
drivers in Hampton Roads, Virginia, would be highly motivated to 
use an alternative route when expected delays are observed on the 
intended route if advanced traveler information system information 
is available for alternate routes. The study found that no attempt was 
made to provide a representative sample of the region’s population 
although the survey was initially intended to obtain enough infor-
mation to provide data for behavior-based testing. This limitation is 
why their analyses indicate no statistical evidence for relationships 
between demographics (e.g., age or gender) and driver’s motivation 
to detour for that sample.

Research conducted by Wu et al. focused on household evacuation 
logistics in nine counties or parishes that conducted evacuations dur-
ing Hurricanes Katrina and Rita (56). The study reported the choice 
of evacuation destination and route in different counties and pre-
sented the necessity of developing mathematically tractable models 
of household evacuation route choice. Murray-Tuite et al. reported 
that many evacuees base their routing decisions on the belief that 
the selected route would be shortest, is their usual or most familiar 
route during hurricane evacuation, or both (19). Recently, Sadri et al. 
developed a mixed logit model to understand the choice of routing 
strategies during hurricane evacuation by using data from Hurricane 
Ivan in 2004 (57). The model identified and explained several impor-
tant factors that influence the routing behavior of evacuees among 
three significant alternatives: selecting the usual route, following the 
routes recommended by emergency officials, and possibly detouring 
or route switching.

This study presents a random-parameter multinomial logit model 
(i.e., a mixed logit model) to capture the underlying unobserved 
characteristics in the evacuation routing behavior of the evacuees 
from Miami Beach during a major hurricane in selecting one of the 
six major bridges or causeways available for them to evacuate. This 
study identifies the variables associated with bridge choice decision 

making and then provides some rational inferences about hurricane 
evacuation routing strategies of Miami Beach residents.

Data

In this study, data were collected from a survey of randomly sampled 
Miami Beach residents (18 years and older), who participated volun-
tarily. The survey was funded by the National Science Foundation. 
Miami Beach has a specific geographic shape with approximately 
90,000 residents who have to evacuate over one of the six causeways 
or bridges. Approximately 70% of the population from high-risk 
areas such as Miami Beach evacuated over a 10-h period during Hur-
ricane Andrew (58). This area was also threatened by Hurricane Floyd 
later, in 1999. A total of 13,565 numbers were called for a telephone 
survey (later in 2012) and 61% of them were potential residences. In 
residences where a person was reached and asked to do the survey, 
approximately 54% agreed.

The survey was primarily designed to discover Miami Beach 
residents’ most likely plans in case of a major hurricane. The respon-
dents were given a hypothetical scenario in which a major Cate
gory 4 hurricane was approaching South Florida from the east and 
was forecast to reach the study area early Thursday morning, 5 days 
from the day (Saturday) on which the survey was being conducted. 
Hypothetically, Miami–Dade County announced that people in all 
evacuation zones would have to evacuate by 10:00 a.m. Wednesday 
morning. Given this situation, the survey respondents were requested 
to provide their most likely evacuation plans. The data included house-
hold sociodemographic information and evacuation-related features 
such as evacuation decision, the time and day of evacuation, the des-
tination, evacuation mode choice, previous hurricane experience, dif-
ferent activities to participate in, choice of major bridges to evacuate, 
and so forth.

Originally, the data included 301 bridge choice observations, which 
included one of the six options: MacArthur Causeway, Venetian 
Causeway, Julia Tuttle Causeway, John F. Kennedy Causeway, Broad 
Causeway, and Haulover Bridge. Figure 1 presents the geolocations 
of these respondents and the location of the bridges and causeways; 
the dots in Figure 1 were color-coded by bridge selection. Respondents 
provided the approximate location of their evacuation destinations 
and these locations were geocoded by using GPSVisualizer (59). 
Then a Python code was used to measure the approximate distance 
in miles from Google Maps required to travel from a given origin to 
the destination by using each of those crossings (60). Starting with 
an initial distribution of 301 respondents (Figure 2a), the number of 
observations was reduced to 248 (margin of error ±6.2%) after the 
missing data for some of the explanatory variables in the data set were 
accounted for (Figure 2b). Table 1 provides additional information 
on the mean, standard deviation, minimum, and maximum of the 
variables included in the model.

Methodology

To evacuate off-beach, Miami Beach residents need to use one of 
the six major causeways or bridges: MacArthur Causeway, Venetian 
Causeway, Julia Tuttle Causeway, John F. Kennedy Causeway, 
Broad Causeway, and Haulover Bridge. The locations of these 
crossings are presented in Figure 1. Thus, the evacuees only have 
six discrete choices in order to reach the preferred evacuation des-
tination from their households. Such preferences can efficiently be 
modeled by using the analytical framework of logit models, that is, 
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FIGURE 2    Bridge choice distribution for Miami Beach residents: (a) initial distribution (301 observations) and (b) final distribution  
(248 responses).

TABLE 1    Descriptive Statistics of Explanatory Variables

Variable Description Mean SD Minimum Maximum

Variables That Vary Across Alternatives

Distance via MacArthur Causeway (mi) 472.460 787.665 6 3,367

Distance via Venetian Causeway (mi) 471.258 787.714 5 3,365

Distance via Julia Tuttle Causeway (mi) 469.802 787.409 7 3,363

Distance via John F. Kennedy Causeway (mi) 469.319 786.648 5 3,361

Distance via Broad Causeway (mi) 468.972 785.999 4 3,360

Distance via Haulover Bridge (mi) 471.105 785.177 5 3,361

Variables That Do Not Vary Across Alternatives

Evacuation specific variables
  Evacuation day (1 if evacuee is most likely to evacuate 1 day before landfall, 0 otherwise) 0.343 0.475 0 1
  Evacuation day (1 if evacuee is most likely to evacuate 2 days before landfall, 0 otherwise) 0.359 0.480 0 1
  Evacuation time (1 if evacuee is most likely to evacuate between 6:00 a.m. and 12:00 p.m., 0 otherwise) 0.456 0.498 0 1
  Evacuation time (1 if evacuee is most likely to evacuate between 12:00 p.m. and 6:00 p.m., 0 otherwise) 0.423 0.494 0 1
  Evacuation mode (1 if evacuee is most likely to evacuate by a car, 0 otherwise) 0.891 0.312 0 1
  Evacuation destination (1 if evacuee is most likely to evacuate to a shelter or a hotel, 0 otherwise) 0.234 0.423 0 1

Evacuee specific variables
  Gender (1 if evacuee is female, 0 otherwise) 0.641 0.480 0 1
  Race (1 if evacuee is white, 0 otherwise) 0.935 0.246 0 1
  Number of years lived in South Florida 27.097 16.505 1 83
  Evacuation experience (1 if evacuee evacuated previously for a hurricane, 0 otherwise) 0.649 0.477 0 1

Note: Number of observations = 248. SD = standard deviation.

discrete outcome models (61, 62). In the derivation and applica-
tion of a standard logit model, the underlying assumption is that the 
estimated parameters are fixed across all observations. However, 
parameter estimates will be inconsistent and the outcome probabilities 
would be erroneous if this assumption does not hold (63).

Under the foregoing circumstances, it is appropriate to apply a 
methodological framework that accounts for the possible variation 
(unobserved heterogeneity) of the influential variables affecting bridge 
choice strategy across different evacuees participating in the evacu-
ation. Because of the variance present in the sociodemographic and 
evacuation-related attributes of different evacuees, it is unrealistic 
to assume that the effects of selected variables are the same across all 
observations. Previous research also demonstrated the effectiveness 
of mixed logit models, which can explicitly account for the varia-

tions across different observations of the effects that variables have 
on the choices of major bridges considered in this study (64, 65). A 
function determining the outcome of the bridge choice for evacuee n 
is considered:

= β + εXi n i i n i nBC (1), , ,

where

	BCi,n	=	� function determining bridge choice category i in I (i = 1, 
2, 3, 4, 5, 6),

	 Xi,n	=	vector of explanatory variables (see Table 1),
	 βi	=	vector of estimable parameters, and
	 εi,n	=	error term.
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Assuming εi,n to be generalized extreme value distributed (66), 
the multinomial logit model results in Pn(i), the probability of bridge 
choice type i (among all the types I ) for evacuee n (62):

∑
[ ]

[ ]( ) =
β

β
P i

X

X
n

i i n

i I n

I

exp

exp
(2),

,

An important assumption in the multinomial logit approach is 
that the disturbance terms εi,n are assumed to be independently and 
identically distributed from irrelevant alternatives. This assump-
tion indicates that the relative probability of choosing an alternative 
remains unchanged if a choice option is removed from the choice set 
and erroneous specification could result when this assumption does not 
hold; that is, a subset of the alternatives shares the same unobserved 
effects. The consideration of a nested logit model (66) accounts for 
such an issue by nesting different alternatives to cancel out the shared 
unobserved effects in each nest (62). Although nested logit models can 
only handle issues related to independence of (from) irrelevant alterna-
tives, the mixed logit model is preferred since it accounts for both the 
former assumption and unobserved heterogeneity across observations.

In order to account for the variations of parameters across different 
evacuees (variations in β), a mixing distribution is proposed for the 
bridge choice probabilities (61):

∑∫ [ ]
[ ] ( )( ) =
β

β
β ϕ βP i

X

X
f dn

i i n

i I n

I

exp

exp
(3),

,

where

	 Pn(i)	=	probability of bridge choice type i (among all types I),
	f (β|φ)	=	density function of β, and
	 φ	=	� vector of parameters of density function (mean and 

variance).

This β can now allow evacuee-specific variations of the effect of 
X on bridge choice probabilities and the density function f(β|φ) used 
to determine β. The mixed logit probabilities are then obtained by 
a weighted average for different values of β across evacuees, where 
some elements of the vector β may be fixed and some may be ran-
domly distributed (67). Since the estimation of maximum likelihood 
of mixed logit models is computationally cumbersome, a simulation-
based maximum likelihood method is preferred. Out of different 
simulation-based techniques, Halton draws provide more efficient 
distribution of draws for numerical integration than purely random 
draws (68). McFadden and Ruud (69), Stern (70), and others offer 
details about the simulation-based maximum likelihood methods. In 
this study, 200 Halton draws were considered since 200 Halton draws 
are usually sufficient for accurate parameter estimation (68, 71) and 
random parameters are assumed to be normally distributed. The prob-
ability of the outcome in the case of a mixed-logit model is replaced 
by the corresponding simulated probability obtained from repeated 
Halton draws.

Model Estimation Results

By following the modeling framework just discussed, a multinomial 
logit model with random parameters (i.e., a mixed logit model) is 
estimated in this study. To model evacuees’ bridge choice decisions 
within a mixed logit framework, NLOGIT Version 4.0 was used (72). 

All the explanatory variables used in the model are generic variables 
that are common among the alternatives except the distance variable, 
which varies across different alternatives. A discussion of the model 
goodness-of-fit measures, estimated parameters, and marginal effects 
is presented in the subsequent sections.

Goodness-of-Fit Measures

To distinguish between the estimated mixed logit (random-parameter 
logit) model and the standard logit (fixed-parameter logit) model, the 
estimation results of both of the models are reported in Table 2. 
In addition, a likelihood ratio test is run to test the overall statisti-
cal significance of the mixed logit model over the standard logit 
model. Here, the likelihood ratio (LR) is calculated with the following 
equation:

[ ]) )( (= − β − βLR 2 LL LL (4)fixed random

where LL(βfixed) is the log likelihood at convergence of the standard 
logit model (fixed) and LL(βrandom) is the log likelihood at convergence 
of the random-parameter logit model (mixed). LR is χ2-distributed 
with degrees of freedom equal to the difference in the number of 
parameters of both of the models. The value of LR is 9.533 and the 
critical value of χ2

0.05,2 (5% level of significance or 95% level of 
confidence and degrees of freedom equal to 2) is 5.990 (Table 3). As 
a result, the null hypothesis of no random parameters (i.e., a fixed-
parameter logit model) is rejected and the validity of the mixed logit 
model over the standard fixed-parameter logit model is established. 
To compare the goodness-of-fit measures for both of the models, the 
values of ρ2 and adjusted ρ2 are also reported in Table 3.

Parameter Estimates

As presented in Table 2, most of the variables included in the 
mixed logit model are statistically significant with plausible signs 
at the usual 5% or 10% levels of significance except four impor-
tant evacuation-specific variables (time, day, destination, and previ-
ous experience). Despite relatively low t-statistics, these variables 
are included in the model by assuming that they influence the choice 
of a routing strategy and by following the discussion on criteria for 
omitting a variable by Ben-Akiva and Lerman (73). Two parameters  
in the model are treated as random (vary across the population) 
since their standard deviations are statistically significant for their 
assumed normal distribution, whereas the others are treated as fixed 
parameters (standard errors not significantly different from zero).

The constant terms are defined for the MacArthur Causeway and 
Venetian Causeway utility functions, which indicate, all else being 
equal, that the evacuees are more likely to take Venetian Causeway  
followed by MacArthur Causeway as compared with the other alter-
natives. Everything else being the same, Venetian Causeway is the 
most preferred bridge because it has the lowest annual average daily 
traffic (fewer than 15,000 vehicles) (74). This finding is similar to 
that for Hurricane Ivan, when evacuees took the route that they 
thought would be the least congested (6). The natural logarithm of 
distance from origin to the evacuation destination along different 
bridges is included in all utility functions of the model since this vari-
able varies across different alternatives (62). The negative sign indi-
cates that the likelihood of a bridge’s being selected decreases with 
increasing distance. The natural logarithm of this distance is used in 
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TABLE 2    Estimation Results of Logit Models for Choice of Evacuation Bridge

Random-Parameter Model Fixed-Parameter Model

Estimation Result Coefficient t-Stat.
Marginal 
Effect Coefficient t-Stat.

Marginal 
Effect

MacArthur Causeway

Constant 2.107 2.55 na 1.690 2.52 na

Natural logarithm of distance (mi) −6.169 −5.50 −3.534 −4.464 −5.89 −0.693

Indicator variable for evacuation mode (1 if evacuee is most likely 
to evacuate by a car, 0 otherwise)

−1.514 −2.41 −0.152 −1.204 −2.47 −0.187 

Indicator variable for evacuation time (1 if evacuee is most likely to 
evacuate between noon and 6:00 p.m., 0 otherwise)

−0.616 −1.40 −0.029 −0.569 −1.65 −0.088 

Indicator variable for evacuation destination (1 if evacuee is most 
likely to evacuate to a shelter or a hotel, 0 otherwise)

−0.528 −1.12 −0.013 −0.335 −0.83 −0.052 

Venetian Causeway

Constant 2.462 2.29 na 1.991 1.93 na

Natural logarithm of distance (mi) −6.591 −5.89 −1.070 −4.826 −6.34 −0.210

Indicator variable for evacuation day (1 if evacuee is most likely to 
evacuate one day before landfall, 0 otherwise)

1.561 2.07 0.028 1.110 1.72 0.048 

Indicator variable for previous evacuation experience (1 if evacuee 
evacuated previously for a hurricane, 0 otherwise)

−1.981 −2.72 −0.035 −1.557 −2.47 −0.068 

Indicator variable for race (1 if evacuee is white, 0 otherwise) −2.386 −2.07 −0.040 −1.641 −1.95 −0.071

(SD of the parameter estimate) (1.611) (1.83) na na na na

Julia Tuttle Causeway

Natural logarithm of distance (mi) −6.062 −5.51 −2.259 −4.462 −5.95 0.943

Indicator variable for race (1 if evacuee is white, 0 otherwise) −0.285 −0.35 0.041 0.714 1.60 0.151

(SD of the parameter estimate) (5.024) (3.80) na na na na

John F. Kennedy Causeway

Natural logarithm of distance (mi) −6.318 −5.72 −2.478 −4.616 −6.18 −0.462

Indicator variable for evacuation time (1 if evacuee is most likely to 
evacuate between 6:00 a.m. and noon, 0 otherwise)

0.836 1.83 0.037 0.733 1.84 0.073 

Broad Causeway

Natural logarithm of distance (mi) −6.320 −5.72 −2.428 −4.610 −6.17 −0.460

Number of years lived in South Florida 0.027 2.23 0.067 0.022 2.09 0.002

Indicator variable for evacuation time (1 if evacuee is most likely to 
evacuate between noon and 6:00 p.m., 0 otherwise)

−0.879 −1.77 −0.025 −0.656 −1.57 −0.065 

Haulover Bridge

Natural logarithm of distance (mi) −6.096 −5.52 −1.991 −4.437 −5.91 −0.341

Indicator variable for gender (1 if evacuee is female, 0 otherwise) 1.249 2.15 0.062 0.875 1.77 0.067

Indicator variable for evacuation day (1 if evacuee is most likely to 
evacuate 2 days before landfall, 0 otherwise)

−0.731 −1.29 −0.012 −0.711 −1.34 −0.055 

Indicator variable for evacuation mode (1 if evacuee is most likely 
to evacuate by a car, 0 otherwise)

−1.251 −1.68 −0.068 −0.776 −1.20 −0.060 

Indicator variable for previous evacuation experience (1 if evacuee 
evacuated previously for a hurricane, 0 otherwise)

−0.713 −1.37 −0.024 −0.618 −1.36 −0.048 

Note: t-stat. = t-statistic; na = not applicable.
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the model to achieve normality, and the use of linear distance indi-
cates that an undefined increment of distance has the same linear 
effect in the choice probabilities, which is unrealistic. Estimation 
of different parameters for the six distances suggests that distance is 
not valued equally via the six bridges and distance on the Venetian 
Causeway is the most onerous (β = −6.591).

The proposed model is also capable of explaining the effects of 
several evacuation-specific indicator variables (evacuation day, time, 
destination, and mode) on a specific bridge choice strategy. The indi-
cator variables for evacuation day were defined for Venetian Cause-
way and Haulover Bridge utility functions. Evacuees who are most 
likely to evacuate one day before the hurricane landfall will prefer  
Venetian Causeway over any of the other bridges (β = 1.561) because 
people evacuating close to landfall may consider the other bridges 
overcongested whereas Venetian Causeway usually experiences the 
least amount of traffic with less than 15,000 AADT (74). However, 
evacuees who would like to evacuate 2 days before landfall are less 
likely to take Haulover Bridge as compared with the other alter-
natives. As far as evacuation time is concerned, John F. Kennedy 
Causeway is preferred by the evacuees who are most likely to evacu-
ate in the morning (between 6:00 a.m. and noon) than any other 
bridge (β = 0.836). However, people evacuating in the afternoon 
(between noon and 6:00 p.m.) are less likely to take Broad Causeway 
(β = −0.879) followed by MacArthur Causeway (β = −0.616).

Miami Beach residents, who are most likely to evacuate to a hotel 
or a public shelter, are less likely to take MacArthur Causeway than 
any other bridge (β = −0.528). Sadri et al. found the evacuation 
destination to be a determining factor for a given routing strategy 
of evacuees who evacuated during Hurricane Ivan (6). An indicator 
variable for evacuation mode (evacuees most likely taking a car) 
was defined for both MacArthur Causeway and Haulover Bridge 
utility functions. With a negative sign, the estimated parameter sug-
gests that evacuees taking a car to evacuate will be less likely to 
take MacArthur Causeway (β = −1.514) followed by the preference 
of taking the Haulover Bridge (β = −1.251). Previous evacuation 
experience plays an important role in different evacuation-related 
decisions. For example, Hasan et al. used evacuation experience as 
an indicator variable to study the question of whether or not to evac-
uate (18), whereas Sadri et al. used it to study the evacuation mode 
choice decision of Miami Beach residents (39). In this study, the 
indicator variable for previous evacuation experience was defined 
both for Venetian Causeway (β = −1.981) and for Haulover Bridge 
(β = −0.713). The negative parameters indicate that people having 

previous experience will be more likely to avoid these two bridges, 
that is, be less likely to take them.

The positive parameter on the gender indicator variable suggests 
that women are more likely to take the Haulover Bridge than any of 
the other five bridges. The variable representing number of years 
lived in South Florida is defined for the Broad Causeway utility 
function and the positive parameter indicates that the likelihood 
of taking the Broad Causeway increases with the number of years 
an evacuee has lived in South Florida. Sadri et al. found that the 
more an evacuee gains in traffic experience over time in a given 
location, the more confident she or he becomes in terms of route 
selection (6). Turning to the two random parameters estimated in the 
model, a race indicator variable was defined for both the Venetian 
Causeway and Julia Tuttle Causeway utility functions. With a mean 
of −2.386 and standard deviation of 1.611, the parameter estimates 
for the white indicator variable imply that 93% of the evacuees who 
are white have a lower probability of taking the Venetian Cause-
way to evacuate while the remaining 7% have a higher probability. 
However, 52% of the evacuees who are white have a lower prob-
ability of taking the Julia Tuttle Causeway while the remaining 48% 
have a higher probability (mean = −0.285 and standard deviation = 
5.024). Both of the random parameters in the model were assumed 
to be normally distributed and standard deviations of the parameter 
estimates were statistically significant. Since the majority of Miami 
Beach residents are white by race (87.4%), this is an important 
finding that captures the unobserved heterogeneity across different 
evacuees (7).

Marginal Effects

Although the model explains the combined effects of the explanatory 
variables, marginal effects of the corresponding variables are also 
reported in order to determine the importance of individual param-
eters (see Table 2). Marginal effects are more appropriate in order to 
demonstrate indicator or dummy variables that can be computed as 
the difference in the estimated probabilities with the indicator vari-
able changing from zero to 1, whereas all other variables are equal 
to their means (62). In this study, the average marginal effect across 
all observations is reported since each observation in the data has its 
own marginal effect. From the average marginal effect, for female 
evacuees the probability of taking the Haulover Bridge increases by 
0.062 as compared with that of the male evacuees. For the indica-
tor variable for evacuation mode (evacuees taking a car to evacuate), 
the average marginal effect suggests that the probability of taking 
the MacArthur Causeway decreases by 0.152. In addition, the aver-
age marginal effect implies that each additional year spent in South 
Florida increases the probability of taking the Broad Causeway  
by 0.067.

Conclusions

From the foregoing discussion and the proposed model, it is pos-
sible to make meaningful inferences about the off-beach evacuation 
routing strategy of Miami Beach residents during a major hurricane. 
Introducing random parameters helps to account for the heterogeneous 
responses of the evacuees in selecting a major bridge while evacuating 
to a safe destination. The proposed model would help practitioners 
to predict different fractions of people in selecting a major bridge or 
causeway and to determine the expected level of congestion.

TABLE 3    Goodness-of-Fit Measures for Random-  
and Fixed-Parameter Logit Models

Goodness-of-fit Measure
Random 
Parameters

Fixed 
Parameters

Number of parameters 24 22

Log likelihood at zero, LL(0) −444.3563 −444.3563

Log likelihood at convergence, LL(β) −339.3677 −344.1343

ρ2 0.236 0.226

Adjusted ρ2 0.182 0.176

LR test2 Random versus 
  fixed parameters

LR = −2[LL(βfixed) − LL(βrandom)] 9.533

aDegrees of freedom = 2; critical χ2
0.05,2 (0.95% level of confidence) = 

5.990; number of observations = 248.
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Although only a few studies capture hurricane evacuation routing 
behavior from the evacuees’ point of view, this study presents a mixed 
logit model to capture the underlying determining factors that influ-
ence the evacuation routing behavior of the evacuees from Miami 
Beach during a major hurricane. The model was developed by using 
data obtained from a survey that included a hypothetical Category 4  
(major) hurricane scenario to reveal the most likely evacuation plans of 
Miami Beach residents, who need to use one of the six major crossings 
(MacArthur Causeway, Venetian Causeway, Julia Tuttle Causeway, 
John F. Kennedy Causeway, Broad Causeway, and Haulover Bridge) 
in reaching an off-beach destination. Once a household decides to 
evacuate and selects the evacuation destination, the following step is 
to select a routing strategy that they think would help them to reach the 
destination in the minimum possible time. A detailed understanding of 
this routing behavior is thus required, and a logical interpretation of the 
routing strategies would help emergency officials and planners to set 
up efficient evacuation policies and take appropriate control measures.

All of the explanatory variables included in the final model speci-
fication have plausible signs and provide useful implications. The 
combined effects of significant variables including evacuees’ socio
demographic attributes (race, gender, etc.), evacuation-related attri-
butes (time and day of evacuation, evacuation mode, and destination), 
and distance to travel would predict the routing behavior of evacuees 
in a better way as revealed from this empirical analysis. The random 
parameters (normally distributed) suggest that their effect varies 
across the observations and the random-parameter model shows 
a better fit than its fixed-parameter counterpart. The findings from this 
study provide some key insights regarding the bridge choice behavior 
of Miami Beach residents:

•	 The greater the distance that the evacuees need to travel by using 
a bridge, the less likely it is that the evacuees will take that bridge.
•	 Although the majority of Miami Beach residents are white 

(87.4%), the evacuees’ being white results in a lower probability to 
take the Venetian Causeway (93%) and Julia Tuttle Causeway (52%) 
as compared with the other crossings.
•	 All else being equal, the evacuees are more likely to take Venetian 

Causeway followed by MacArthur Causeway as compared with the 
other bridges.
•	 Evacuees will prefer Venetian Causeway if evacuating 1 day 

before landfall and are less likely take Haulover Bridge if evacuating 
2 days before landfall.
•	 John F. Kennedy Causeway is preferred by the evacuees who 

are most likely to evacuate in the morning, and afternoon evacuees 
are less likely to take Broad Causeway and MacArthur Causeway.
•	 MacArthur Causeway is less preferred by those evacuating to 

a hotel or public shelter.
•	 MacArthur Causeway and Haulover Bridge are less preferred 

by those evacuating by car.
•	 Female evacuees prefer the Haulover Bridge, and evacuees 

having previous evacuation experience are less likely to take Venetian 
Causeway or Haulover Bridge.

The proposed econometric model for evacuation routing behavior 
of Miami Beach residents would help different stakeholders to sort 
out more efficient evacuation plans by predicting different fractions 
of people taking each of the six bridges. Since bridges are the main 
sources of bottlenecks, it would be possible to determine the level of 
congestion with the help of this model. Different control measures, 
such as contraflow and bridge closure, could be employed during a 
hurricane threat as needed. This model may also be useful in evacua-

tion simulation studies. The model can be used as an important input 
in terms of bridge choice to determine the evacuation clearance time 
by building more credible simulation techniques. However, future 
studies should focus on getting detailed path information of evacuees 
to develop more robust route choice models for evacuation.
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